TUTORIAL-02: PROBLEM TABLE ANALYSIS

Based on Lecture-11: PROBLEM TABLE ALGORITHM-1st Part

Problem 1: The stream data for a typical process plant is given in Table 1 for which $\Delta T_{min} = 10^{\circ}$ C. Calculate the hot and cold utility and pinch point for this process.

Stream Name	Stream Type	$T_{S} (^{0}C)$	$T_{T} ({}^{0}C)$	$CP (kW/ {}^{0}C)$
1	0.11(01)	10	4.5	120
1	Cold(C1)	10	45	120
2	Hot(H1)	45	15	110
3	Cold(C2)	50	85	5
4	Hot(H2)	85	15	5
5	Cold(C3)	10	75	25
6	Cold(C4)	45	80	20
7	Hot(H3)	40	10	120

Table 1: Stream data for typical process plant

Solution to Problem-1:

The first step to calculate hot and cold utilities is to find out the shifted temperatures for the hot and cold streams as shown below:

$$T_{\rm H(shifted)} = T_{\rm H(actual)} - \Delta T_{\rm min}/2$$
⁽¹⁾

$$T_{C(shifted)} = T_{C(actual)} + \Delta T_{min}/2$$
⁽²⁾

Values of shifted temperatures of hot and cold streams are shown in Table 2.

Stream type	Actual temperature (⁰ C)		Shifted temperature (⁰ C)		
	Supply	Target	Supply	Target	
	Temperature	Temperature	Temperature	Temperature	
H1	45	15	40	10	
H2	85	15	80	10	
H3	40	10	35	5	
C1	10	45	15	50	
C2	50	85	55	90	
C3	10	75	15	80	
C4	45	80	50	85	

Table 2: Shifted temperature data for stream data of Table 1

The shifted temperatures are arranged in decreasing order where the temperature, which appears more than one, should be written only once. It gives temperature intervals as shown in column no. 1 of Table 3.

Enthalpy balances can easily be calculated for each temperature interval using Eq. 3:

$$\Delta H_i = \left[\sum CP_C - \sum CP_H\right]_i \Delta T_i = (T_i - T_{i+1}) * \left[\sum CP_C - \sum CP_H\right]_i$$
(3)

This equation is valid for any temperature interval i. The computed heat balance in all the temperature intervals are shown in the Table 3. The last column of this table indicates whether the interval is in heat surplus or heat deficit.

Shifted	Stream population				T_I - T_{I+1}	$\sum CP_{C}$ –	$\Delta H(kW)$	surplus
temperature (°C)	5					$\sum CP_H$		or deficit
90			1					
				2	0 5	5	25	Deficit
85					↑			
		5		25	5	25	125	Deficit
80				1				
					25	45	1125	Deficit
55		12	0					
			\sim C2	1	5	40	200	Deficit
50	•	-						
	110				4 10	140	1400	Deficit
40				-				
		120			5	30	150	Deficit
35								
					20	-90	-1800	Surplus
15								
			1	C3	5	-235	-1175	Surplus
10								
	Г. Н	12			5	-120	-600	Surplus
5	H1	•						
H3								

Table 3: Temperature interval and heat balance in each interval

After constructing the Problem table and defining intervals with surplus and deficit of heat, the next step is to develop a heat cascade based on key feature of problem table that any heat available in interval i is hot enough to supply its duty in interval i+1. The cascading is shown in column no. 3 of Table 4. Further, the column shows negative values of heat in a interval, which is infeasible. To make the problem feasible most negative value of heat, which is 3025 kW (column 3 in Table 4), is cascaded from top and considered as hot utility. The cascading is shown in last column of Table 4.

	Table 4:	Problem table c	3025kV	N	
	Shifted temperature (°C)	ΔH (kW)	Heat cascade at stage 1, ΔH (kW)	Heat cascade at stage 2, $\Delta H (kW)$	
	90	25	0	3025	Hot utility
	85		-25	3000	3025-25 = 3000
	80	125	-150	2875	3000-125 = 2875
	55	1125	-1275	1750	2857-1125=1750
	50	200	-1475	1550	Add to the TOP
	40	1400	-2875	150	temp. level with
Pinc <u>h</u>	25	150	2025	0	3025 kW) and then
point		-1800	-3025	0	cascade down satisfying the heat
	15	-1175	-1225	1800	demand and supply
	10	(00	-50	2975	
	5	-600	550	3575	Cold utility

From the problem table cascade shown in Table 4 following information are extracted:

Amount of minimum hot utility required: 3025 kW

Amount of minimum cold utility required: 3575 kW

Pinch point: 35 °C

Hot pinch : $40 \,{}^{0}C$

Cold pinch : $30 \, {}^{0}C$

PROBLEM 2 – The stream data for the process is given in Table 5. For this process compute the amount of hot and cold utility required considering ΔT_{min} as 10°C.

Stream	T _s (°C)	T _T (°C)	Heat Capacity Flow rate (MW.°C ⁻¹)
Hot	415	40	0.22
Hot	50	35	1.2
Cold	25	380	0.18
Cold	30	370	0.06
Cold	115	120	25

Table: 5: Stream data for problem 2

Solution to Problem-2: The shifted temperature data can be calculated using Eq. 1 and 2 and their values are shown in Table 6.

Table: 6: Shifted temperat	ure data for strear	m data of problem -2
----------------------------	---------------------	----------------------

Stream	Actual temperature (⁰ C)		Shifted temperature (⁰ C)		
	Supply Target		Supply	Target	
	Temperature	Temperature	Temperature	Temperature	
H1	415	40	410	35	
H2	50	35	45	30	
C1	25	380	30	385	
C2	30	370	35	375	
C3	115	120	120	125	

Enthalpy balances for each temperature interval are calculated using Eq.3. The computed heat balance in all the temperature intervals are shown in the Table 7. The last column of the table shows whether the interval is in heat surplus or heat deficit.

Shifted	тт	1			$T_{I}-T_{I+1}$	ΣCP_C - ΣCP_H	ΔH (MW)	Surplus or
temperature (°C)	Н	1			(°C)	$(MW.^{o}C^{-1})$		deficit
410								
			0.18		25	-0.22	-5.5	Surplus
385								
			0	.06	10	-0.04	-0.4	Deficit
375								
				25	250	0.02	5	Deficit
125								
					5	25.02	125.1	Deficit
120								
		H2		C3	75	0.02	1.5	Deficit
45								
					10	-1.18	-11.8	Surplus
35	•							
	0.22	2	0	22	5	-1.02	-5.1	Surplus
30		•						
1.2 C1								

Table 7: Table for temperature interval heat balance

After defining intervals with surplus and deficit of heat, heat cascade is done as carried out for Problem -1. It is shown in Table 8.

	Shifted	ΔH (MW)	Heat cascade at	Heat cascade at	
	temperature		stage 1,	stage 2,	
	(°C)		$\Delta H (kW)$	$\Delta H (kW)$	
	410		0	125.7	Hot utility
		-5.5			
	385		5.5	131.2	
		-0.4			
	375		5.9	131.6	
		5			
	125		0.9	126.6	
Pinch		125.1			
point	120		-124.2	1.5	
		1.5			
	45		-125.7	0	
		-11.8			
	35		-113.9	11.8	
		-5.1			C.H
	30		-108.8	16.9	

Table 8: Problem table cascade

From the problem table cascade shown in Table 13.8 following observations are drawn:

Amount of hot utility required: 125.7 MW

Amount of cold utility required: 16.9 MW

Pinch point: 45 °C

Hot pinch point: 50 °C

Cold pinch point: 40 °C